Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 639: 302-313, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805755

RESUMO

The combination of imaging and different therapeutic strategies into one single nanoplatform often demonstrates improved efficacy over monotherapy in cancer treatments. Herein, a multifunctional nanoplatform (labelled as MPRD) based on molybdenum disulfide quantum dots (MoS2 QDs) is developed to achieve enhanced antitumor efficiency by integrating fluorescence imaging, tumor-targeting and synergistic chemo/photodynamic therapy (PDT) into one system. First, polyethylene glycol (PEG)ylated MoS2 QDs (MP) with desirable stability are synthesized via a hydrothermal process using MoS2 QDs and carboxyamino-terminated oligomeric PEG as raw materials. Then, MP were conjugated with arginine-glycine-aspartic acid (RGD) peptide via amidation to form a novel nanocarrier (MPR), which possesses strong blue fluorescence, good biocompatibility and ανß3 receptor-mediated targeting ability. More importantly, MPR generated reactive oxygen species under 808 nm laser activation to realize targeted antitumor PDT. Further doxorubicin (DOX) was loaded onto MPR, which endows MPRD with localized chemotherapy and pH-responsive drug release. The MPRD exhibits improved chemotherapy performance on HepG2 cells (overexpressing integrin ανß3) owing to enhanced cellular uptake mediated by ανß3 receptor and effective drug release triggered by intracellular pH. Notably, MPRD with efficient tumor targeting ability and high chemo/PDT efficacy under NIR laser irradiation is capable of inhibiting HepG2 tumor cell growth both in vitro and in vivo, which is significantly superior to each individual therapy. These findings demonstrate that MPRD holds great potential in effective cancer therapy.


Assuntos
Nanopartículas , Nanosferas , Neoplasias , Fotoquimioterapia , Humanos , Molibdênio , Doxorrubicina/farmacologia , Imagem Óptica , Concentração de Íons de Hidrogênio , Linhagem Celular Tumoral , Liberação Controlada de Fármacos
2.
J Colloid Interface Sci ; 608(Pt 2): 1393-1400, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742060

RESUMO

Herein, a feasible outside-in hydrothermal self-transformation strategy is presented to fabricate hierarchically porous benzene-bridged organosilica nanoparticles (HPBONs), and detailed mechanistic investigations were performed to study the formation of hierarchically porous nanostructures. The obtained HPBONs consisted of a mesoporous core (2.3 nm) and a large mesoporous flocculent shell (12.6 nm), which corresponded to an overall diameter of âˆ¼ 200 nm and good water dispersibility, respectively. Owing to the unique hierarchically porous structure and high surface area (877 m2/g), HPBONs showed a high coloading capacity for the hydrophilic drug doxorubicin (DOX) and the hydrophobic photosensitizer chlorin e6 (Ce6) (355 µg/mg, 38 µg/mg, respectively) and acid-responsive DOX drug release (42.62%), leading to precise chemo-photodynamic therapy in vitro, as the cytotoxicity assay revealed 70% killing of breast cancer (MCF-7) cells. This research provides a new method to construct hierarchically porous organosilica-based nanodelivery systems.


Assuntos
Nanopartículas , Preparações Farmacêuticas , Fotoquimioterapia , Benzeno , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Humanos , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...